Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Saudi Pharm J ; 31(5): 736-745, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37181143

RESUMO

The current study was designed to develop a nanoconjugate of cordycepin-melittin (COR-MEL) and assess its healing property in wounded diabetic rats. The prepared nanoconjugate has a particle size of 253.5 ± 17.4 nm with a polydispersity index (PDI) of 0.35 ± 0.04 and zeta potential of 17.2 ± 0.3 mV. To establish the wound healing property of the COR-MEL nanoconjugate, animal studies were pursued, where the animals with diabetes were exposed to excision and treated with COR hydrogel, MEL hydrogel, or COR-MEL nanoconjugate topically. The study demonstrated an accelerated wound contraction in COR-MEL nanoconjugate -treated diabetic rats, which was further validated by histological analysis. The nanoconjugate further exhibited antioxidant activities by inhibiting the accumulation of malondialdehyde (MDA) and exhaustion of superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzymatic activities. The nanoconjugate further demonstrated an enhanced anti-inflammatory activity by retarding the expression of interleukin (IL)-6 and tumor necrosis factor (TNF)-α. Additionally, the nanoconjugate exhibits a strong expression of transforming growth factor (TGF)-ß1, vascular endothelial growth factor (VEGF)-A, and platelet-derived growth factor (PDGFR)-ß, indicating enrichment of proliferation. Likewise, nanoconjugate increased the concentration of hydroxyproline as well as the mRNA expression of collagen, type I, alpha 1 (Col 1A1). Thus, it is concluded that the nanoconjugate possesses a potent wound-healing activity in diabetic rats via antioxidant, anti-inflammatory, and pro-angiogenetic mechanisms.

3.
Front Med (Lausanne) ; 9: 904286, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814769

RESUMO

Objective: Sepsis-induced acute lung injury (ALI) and acute kidney injury (AKI) are major causes of mortality. Menthol is a natural compound that has anti-inflammatory and antioxidative actions. Since exaggerated inflammatory and oxidative stress are characteristics of sepsis, the aim of this study was to evaluate the effect of menthol against sepsis-induced mortality, ALI, and AKI. Methods: The cecal ligation and puncture (CLP) procedure was employed as a model of sepsis. Rats were grouped into sham, sham-Menthol, CLP, and CLP-Menthol (100 mg/kg, p.o). Key Findings: A survival study showed that menthol enhanced the survival after sepsis from 0% in septic group to 30%. Septic rats developed histological evidence of ALI and AKI. Menthol markedly suppressed sepsis induced elevation of tissue TNF-a, ameliorated sepsis-induced cleavage of caspase-3 and restored the antiapoptotic marker Bcl2. Significance: We introduced a role of the proliferating cell nuclear antigen (PCNA) in these tissues with a possible link to the damage induced by sepsis. PCNA level was markedly reduced in septic animals and menthol ameliorated this effect. Our data provide novel evidence that menthol protects against organ damage and decreases mortality in experimental sepsis.

4.
Drug Deliv ; 29(1): 1536-1548, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35612292

RESUMO

Certain anticancer agents selectively target the nucleus of cancer cells. One such drug is 2-methoxyestradiol (2ME), which is used for treating lung cancer. To improve the therapeutic effectiveness of these agents, many new methods have been devised. 2ME was entrapped into the core of hydrophobic invasomes (INVA) covered with Phospholipon 90G and apamin (APA). The Box-Behnken statistical design was implemented to enhance the composition. Using Design-Expert software (Stat-Ease Inc., Minneapolis, MN), the INVA component quantities were optimized to obtain spherical particles with the smallest size, that is, a diameter of 167.8 nm. 2ME-INVA-APA significantly inhibited A549 cells and exhibited IC50 of 1.15 ± 0.04 µg/mL, which is lower than raw 2ME (IC50 5.6 ± 0.2 µg/mL). Post 2ME-INVA-APA administration, a significant rise in cell death and necrosis was seen among the A549 cells compared to those treated with plain formula or 2ME alone. This effect was indicated by increased Bax expression and reduced Bcl-2 expression, as well as mitochondrial membrane potential loss. Moreover, the cell cycle analysis showed that 2ME-INVA-APA arrests the G2-M phase of the A549 cells. Additionally, it was observed that the micellar formulation of the drug increased the cell count in pre-G1, thereby exhibiting phenomenal apoptotic potential. Furthermore, it up-regulates caspase-9 and p53 and downregulates TNF-α and NF-κß. Collectively, these findings showed that our optimized 2ME-INVA-APA could easily seep through the cell membrane and induce apoptosis in relatively low doses.


Assuntos
Apoptose , Neoplasias Pulmonares , 2-Metoxiestradiol/farmacologia , Células A549 , Apamina/farmacologia , Estradiol/farmacologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...